
The Adapter Pattern
Interface with anything!

Adapter in a Nutshell

- An adapter takes an object with one interface,
and changes the interface to make it look like something it’s not.

- Allows two objects to work together, even though they were not
designed to.

- Doesn’t necessarily add any new functionality (in the strictest sense).
Just performs a conversion

What is a example of an adapter that we have all
used at some point?

AC power adapter lets US plugs work with Euro outlets

Some adapters can have complex internals
- E.g to increase/decrease voltage when appropriate

No need to modify either the client (the plug) or the adaptee (the socket).

Sounds like decorator? Close, but not quite...

Wraps an object

Decorator Adapter

Enhances object with
new behavior.

Doesn’t alter
pre-existing interface

Changes interface
exposed by an

object, so it looks
like another

Doesn’t add new
behavior

What are the steps for using adapter?

Client
(e.g. US plug) Adapter Adaptee

(e.g. euro socket)

1. Client makes a request to the adapter by calling a method on it using the target
interface

2. The adapter translates the request into one or more calls on the adaptee using the
adaptee interface

3. The client receives the results of the call and doesn’t need to know anything about the
adaptee to do so.

Designing an adapter

1) Consider your target interface
a) This is the interface that your adapter will be implementing
b) Ask: What is the interface that your clients want to use?

2) Consider your adaptee
a) This is what your adapter will be composing (converting)
b) Perform a mapping of target interface methods to adaptee

methods

3) What about methods on target that don’t map to adaptee?
a) Throw an `UnsupportedOperationException`
b) This is the best we can do, adapter can’t solve this problem :)

Talk is cheap...

Puxuan He

When would we use adapter?
- Third party library integrations

- Ideally, 3rd parties will provide the adapter!

- When you have working code, and do not want to modify its implementation
- When changes to an interface happen frequently (decouples client)
- Migrations from one interface to another (two-way adapter)

- Adapter would implement both the old and new interfaces!

- New interface is released, but not supported by legacy classes
- I.e. the enumeration interface vs the iterator interface

The adapter pattern encapsulates necessary interface
changes into one place

Bonus pattern:
Facade

Simplify your Subsystems

Home theater system

- Has many different interacting components

- To watch a movie requires that the client (you)
interface directly with many portions of the
subsystem

- You need to remember the order for both
subsystems and

Home theater Facade
- Contains a simplified interface for clients to

interact with

- Does not encapsulate the subsystem… can
still call components directly

- Decouples clients from subsystem
components. Can “upgrade” components
without affecting client!

The Principle of Least Knowledge
- Be careful of the number of classes your objects interact with

- More dependencies can lead to tightly coupled designs

- Following this strictly can lead to more wrapper classes in your code, which
can increase complexity and decrease runtime performance.

More of a guideline instead of a rule

Guidelines
From any method of an object, the principle suggests that we should only invoke
methods that belong to

- The object itself

- Objects passed in as a parameter to the method

- Any object the method creates or instantiates

- Any component of the object (i.e. composed objects in the class)

- Do Not call methods on objects returned from other method calls.

Summary

Adapter

- Wraps Object to convert
interface from one to
another

- Does not add new
behavior

Facade
- Provides new interface to

simplify complex
subsystems

- Provides template
methods for performing
common tasks

Decorator

- Wraps object to provide
new behavior

- Does not modify existing
interface otherwise

Questions?

