
Let’s Talk About HTTP Caching
May 10, 2018

Starting with a question:

What’s the best kind of request you can make? (performance wise)

“The best (fastest) request is one that
doesn’t need to be made at all”

Today’s Topics
1. Comparing cache headers ⚽

a. etag / last-modified
b. cache-control / Expires

2. Cache-Busting with Webpack Ȇ
a. `hash` vs. `chunkhash`
b. CommonChunks → `webpack manifest`

3. Simple Server Setup for Static Resource Caching
a. HapiJs

What is an HTTP cache?
Temporary storage location for resources accessed via http by a client

Contains anything that was ever cached by a site you’ve visited

- Static files: JS, CSS, HTML, Images
- Responses from data-producing APIs

Check out the chrome http cache by navigating to chrome://cache

Comparing Http Cache Headers

Two caching methods

Validation Tokens

Requires a round trip to the server to
validate that a resource hasn’t
changed.

- 304: not modified
- 200: resource has changed

Headers: etag & last-modified

Specifying Expiration

Can forego round trip to server on
subsequent requests!

- Cache can become stale...

Headers: cache-control & expires

etag & last-modified
- Used as a Validation Token to determine server-side if resource has changed

- If etag or last-modified are present in response headers, data is cached

- Token is communicated via `If-None-Match` or `If-Modified-Since` request headers

CAUTION: http request
necessary on every page load

Image: https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching

etag last-modified

Token format? Unique hash created from
resource contents

Server’s estimate of the Date the
resource was last updated

expires? When new hash is issued Timestamp updated when file changes

Expected header
in request

If-none-match: hash_value If-modified-since: date_from_server
(provided on initial request of file)

etag is the preferred approach, with last-modified used as fallback

cache-control
Controls who can cache the response, under what conditions, and for how long

Configured correctly, it can prevent round trips to the server!

No trip to server
required!

Images: https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching

no-cache no-store

Cacheability Yes, Resource is cached No, Resource is never cached

Round trip to
server required?

Yes, to confirm via validation token
that resource has not changed

Yes, to re-fetch resource

re-download
required?

Only if validation token indicates
that resource has changed

Yes, every time

no-cache should always be used with an etag/last-modified caching strategy, to ensure
validation tokens are always checked

public private

Cacheability Yes, Resource is cached Yes, Resource is cached

Where can it be
cached?

Can be cached in intermediate
cache (CDN) as well as client

Client ONLY

max-age: duration (in seconds) the resource is cached before it expires and is re-requested

The best request is one that you don’t need to make… max-age makes this possible!

Expires

Header looks like this

Same behavior as `cache-control: max-age`

If max-age is defined, Expires is ignored

Don’t use Expires. Use cache-control: max-age

Expires Info: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Expires

Bonus: Pragma

It looks like this

`no-cache` is it’s only valid value

It provides the same behavior as cache-control: no-cache for Http/1.0 clients

Only use Pragma if backwards compatibility with Http/1.0 clients is necessary.
Otherwise use cache-control: no-cache

Pragma Info: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Pragma

But if no subsequent request is made…
… won’t my cached files become stale?

bundle.js v1

Initial page load
bundle.js

bundle.js v1

Bundle.js max-age=...

bundle.js v2

bundle.js max-age=...

Cache Busting with Webpack

What the hash?
Webpack can be configured to add a hash to the name of your build outputs

Two flavors of hashes:

- `hash` - assigned per-build (changes each re-build)
- `chunkhash` - assigned per-chunk based on file content + last-modified

Quiz: which of the above hashing strategies is preferable?

Prefer chunkhash - only changes when necessary

Common Hashing issue - Webpack Manifest

`manifest` contains webpack runtime code + module mapping

Use CommonChunksPlugin to separate manifest code from main bundles.

How does hashing affect caching?
- A chunkhash only changes if chunk contents are updated... file fingerprint

- Kind of acts like an etag!

- If you’re using webpack chunkhash:
1. You don’t need to send etag headers back in

your responses
2. You can http cache your webpack outputs

FOREVER CACHING

Server Config for Caching Static Assets

HapiJS - inert plugin
Plugin for serving static files from a directory

Gives you the following for free:

- etag / last-modified + cache-control: no-cache headers
- Pre-compressed file lookup (gzip by default lookup by `.gz` extension)

Using Inert gives you validation token caching out of the box with no config ✅

Simple configuration
can lead to big performance wins!

What is the browser cache?

Anything Else To Consider?
Optimize based on data not on hunches

- WebPageTest, NewRelic metrics
- Inspect Waterfalls in the browser

Simple steps can have large impacts

- Configuring http caching correctly + gzipping

Questions?

Additional Resources
Ilya Grigorik from Google on HTTP Caching
https://developers.google.com/web/fundamentals/performance/optimizing-content-
efficiency/http-caching

^This is the best resource that I’ve read to explain HTTP caching

https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching

Appendix

Initial Page Load

DomContentLoaded === HTML document has been parsed, js and CSS resources downloaded

Load === DomContentLoaded + all images and fonts loaded

Stats: 928ms page load time ; 478Kb transferred

Attempt 1: `cache-control: no-cache` + `etag`

What do the
above headers
indicate?

Attempt 1: `cache-control: no-cache` + `etag`

What do the
above headers
indicate?

cache-control: need to validate every request with issuing server
etag: hash issued by server on initial request, file validated via `If-None-Match`
last-modified: date issued by server on initial request, validated via `If-Modified-Since`

Attempt 1: `cache-control: no-cache` + `etag`

Even though resource was not
re-downloaded…

… still took 70.76 ms to revalidate
etags!

Attempt 2: `cache-control: public, max-age`
No-cache

Max-age

Public/private

Attempt 2: `cache-control: public, max-age`

Only necessary
to make 11 of the
26 requests!

